等离子显示屏(PlasmaDisplayPanel,简称等离子)又称为等离子显示器,是一种平面显示屏幕,光线由两块玻璃之间的离子,射向磷质而发出。放出的气体并无水银成份,而是使用惰性气体氖及氙混合而成,这种气体是无害气体。等离子显示器甚为光亮(1000lx或以上),可显示更多种颜色,也可制造出较大面积的显示屏,对角可达381厘米(150吋)。等离子显示屏的对比度亦高,制造出全黑效果,对观看电影尤其适合。显示屏厚度只有6厘米(2吋半),连同其他电路板,厚度亦只有10厘米(4吋)。
等离子显示屏于1964年由美国伊利诺伊大学两位教授DonaldL.Bitzer及H.GeneSlottow及研究生RobertWillson发明,当时是使用于PLATO电脑系统。
1980年代个人电脑刚刚普及,等离子显示屏当时曾一度被拿来用作电脑屏幕。这是由于当时的液晶显示发展仍未成熟,只能进行黑白显示,对比低且液晶反应时间太长的原因所致。直到薄膜晶体管液晶显示器(TFT-LCD)被发明,等离子显示屏才渐渐被赶出电脑屏幕市场。
1983
1983年的时候,IBM发表了型号为3290'消息皮肤'的19寸(48cm)橙色灰阶显示器,它可以同时显示四台IBM3270的消息。不过由于灰阶LCD的竞争过于激烈,1987年IBM计划将位于纽约的当时世界等离子显示屏生产线关闭。因此,LarryWeber、StephenGlobus及生产线的经理JamesKehoe共同创立Plasmaco公司,并将该生产线买下来。此时Weber继续在Urbana担任首席技术官,直到1990年到纽约的Plasmaco工作。
1992
1992年Fujitsu发表世界上台21寸(53cm)全彩屏幕。这台屏幕是伊利诺伊大学厄巴纳-香槟分校及NHKSTRL共同研发出来的。
1994
在1994年,韦伯在圣荷西的一场工业展览中展示了彩色等离子技术。松下电器开始跟Plasmaco共同发展该技术,直到1996年,松下将其并购。
1997
在1997年,富士通发表了台分辨率为852x480,且为渐进式扫描的42寸等离子电视。飞利浦、先锋及其他公司也相继发表了42寸等离子电视。
2006-目前
在2006年晚期,分析家指出LCD会超越等离子,特别是之前以等离子为主力的40寸以上的市场。另一个工业趋势是等离子皮肤制造厂持续合并,市面上流通的约50家厂牌的电视,制造厂只有5家。而在2008年季的全球电视出货量指出,CRT的出货量为2千2百万台左右,LCD则为2千1百万台,等离子则是280万台,背投影则是10万台。
在2000年初,等离子电视是非常热门的高清平板电视的选择,而且当时拥有很多LCD没有的优点,像是非常深邃的黑色、优越的对比度、快速的反应时间、更好的色彩表现、较宽的可视角度,而且当时而言无法将LCD的皮肤做大。不过,持续进步的超大型集成电路的制造技术将LCD的限制逐渐放宽,像是逐渐提升的尺寸、较轻的重量、更低廉的价格而且在电源消耗方面也可以跟等离子电视不相上下。
等离子显示屏的显示尺寸也一直持续的加大。在2008年位于内华达州拉斯维加斯的CES展览上,松下电子展示了当时的等离子电视,显示尺寸到达150寸(381cm),330厘米长,高度达到180厘米。而在2010年位于拉斯维加斯的CES展览,松下也推出了152寸2160p的3D等离子电视。
等离子屏幕的基本工作原理,跟CRT与日光灯有些像。基本上,等离子屏幕是由多个放电小空间所排列而成,每一个放电小空间称为cell,而每一个cell是负责红绿蓝(RGB)三色当中的一色,因此我们所看到的多重色调的颜色,是由三个cell混合不同比例的原色而混成的,而这个混色的方式,跟液晶屏幕所用到的混色方式其实是相近的。
每一个cell的架构,是利用类似日光灯的工作原理。也就是您可以把它当成是体积相当小巧的紫外光日光灯,当中使用解离的氦(He)、氖(Ne)、氙(Xe)等种类的惰性混合气体。当高压电通过的时候,会释放出电能,触发cell当中的气体,产生气体放电,发出紫外光。
当cell受到高压刺激产生紫外光之后,利用紫外光再去刺激涂布玻璃上的红、绿、蓝色磷光质,进而产生所需要的红光、绿光与蓝光等三原色。透过控制不同的cell发出不同强度的紫外光,就可以产生亮度不一的三原色,进而组成各式各样的颜色。
由于等离子屏幕是透过紫外光刺激磷光质发光,因此它跟CRT一样,属于自体发光,跟液晶屏幕的被动发光不同,因此它的发光亮度、颜色鲜艳度与屏幕反应速度,都跟CRT相近,所以您会发现,PDP的亮度动辄能够超过700nits以上,而LCD却要到后期产品才能达到500nits以上的亮度。
有效显示面积1842(H)×1036(V)mm
画面比例16:9
总像素数1706x960
点距0.36mm(H)
1.08mm(V)
色彩数16,777,216
亮度600cd/㎡(平均)
对比度2,500:1
可视角度(H/V)160度
输入RGB:D-Sub15pin×2(VGA)
Composite:RCA×2(AV)
S-Video:4PinMiniDin×2(S-VIDEO)
Component:BNC×2(DVD/DTV)
输出外接音频(L/R)
额定功率1280W
电源AC100V~240V
等离子屏幕的面板主要由两个部份所构成,一个是靠近使用者面的前板制程(FrontProcess),其中包括玻璃基板(GlassSubstrate)、透明电极(TransparentElectrode)、Bus电极(Bus-Electrode)、透明诱电体层(DielectricLayer)、MgO膜(MgOThinFilm)。
另外一个是后板制程(RearProcess),其中包括有萤光体层(PhosphorLayer)、隔墙(BarrierRib)、下板透明诱电体层(DielectricLayer)、寻址电极(AddressElectrode)、玻璃基板(GlassSubstrate)。所以负责发光的磷光质并不是在靠近使用者的那一面,而是在比较内部的部份。
由于控制电路必须要夹在前板制程与后板制程当中,因此在面板的组合过程当中,需要将前后板准确对齐,并且与控制电路作好搭配,确保在发光上不会有问题。在这个步骤当中,会发现,液晶面板需要有背光模组,但是PDP却不需要,因为它是属于自体发光。
单单只有面板也不够,因为还要有高压驱动电路,在搭配上功能不同的控制电路,才能够达到屏幕的基本需求。如果您购买的是等离子电视的话,大多都会搭配专属的电视盒,因为不管是影像输入或者是Tuner,大多设计在电视盒当中,因此一台完整的等离子电视,是包括等离子屏幕与电视盒。
等离子和液晶电视都是平板电视目前的主要产品,由于其显示部分的使用材料和工作原理各不相同,严格的来讲两者并没有什么可比性。工作原理对比:各有所长液晶和等离子的诸多差别,根本上说是由于其工作原理的差别造成的。液晶电视是利用给液晶充电会改变它的分子排列,在不同电流电场作用下,液晶分子会做规则旋转90度排列,产生透光度差别的原理。在两片玻璃基板上装有配向膜,所以液晶会沿者沟槽配向,由于玻璃基板配向膜沟槽偏离90度,所以液晶分子成为扭转型,当玻璃基板没有加入电场时,光线透过偏光板跟着液晶做90度扭转,通过下方偏光板,液晶面板显示白色;当玻璃基板加入电场时,液晶分子产生配列变化,光线通过液晶分子空隙维持原方向,被下方偏光板遮蔽,光线被吸收无法透出,液晶面板显示黑色。
液晶电视便是根据此电压的变化,使面板达到显示效果。形象点说,就好比是一个个小窗户,液晶分子就是一扇扇小窗扇,通过窗花的开关或开口的大小显示图像,而光源来自背面的灯管。而等离子的发光原理和日光灯一样,是在真空玻璃即放电空间中注入惰性气体或水银气体,然后再利用施加电压的方式,使管内的气体产生放电,即等离子效应而释放出紫外线光,照射涂布在玻璃管管壁上的荧光粉,荧光粉就会被激发出可见光;只要涂布不同的荧光粉,就会激发出不同颜色的光。等离子屏幕上的每一个像素,相当于一个小灯管。
屏幕尺寸PK:液晶能小不能大,等离子能大不能小就目前的技术水平而言,将两者放在一起比较不是很恰当的,因为在屏幕的尺寸上,双方差别非常明显,液晶由于受制造工艺的限制,市场上主流的产品尺寸都不大,随着三星七代屏生产线的大规模提高产量,目前37和40英寸的才开始成为主流尺寸。而等离子,最小的尺寸就是42英寸的,现在市场上价格比较合适的都是这个尺寸的产品。
实际上,这个局面也很好的为两者进行了分工,如果在卧室、书房等面积比较小的场合,当然是尺寸比较小的液晶更受欢迎,而在客厅等位置,等离子的大画面更有优势。虽然目前液晶电视也有46、47英寸的产品上市,但是价格还比较高,对等离子还构不成威胁。而等离子可以做到50、60甚至65英寸的,两者还是相安无事。分辨率PK:等离子要略逊液晶一畴电视是用来看节目的,因此清晰度是最重要的。对于平板电视,考察清晰度的高低,就看分辨率的大小。一个很有趣的事情是,等离子虽然屏幕大,分辨率却不如液晶高,液晶屏幕小,但是像素可以做的更小,因此分辨率反倒高。对于液晶电视而言,26英寸的分辨率即可达到1366×768,而42英寸的等离子只有853×480的水平,的也只有1024×1024,不但和1366×768的像素数量相差很大,而且像素形状还是扁的,显示图像的时候,还不得不采用隔行显示的方式。如果等离子要做到1366×768,需要50英寸以上的尺寸。而目前的液晶电视,如厦华的5款产品,37英寸的就可以达到1920×1080的分辨率。从分辨率和清晰度的角度看,等离子要略逊液晶一畴。
亮度PK:液晶效果稍好,等离子显示均匀电视图像清不清晰,和亮度关系非常大,如果亮度不足,很多细节就黑乎乎的一片,什么也看不清了。液晶的图像依靠的是液晶板背面的灯管透过液晶板形成图像,早些时候,亮度一直是困扰液晶电视的一个大问题,提高亮度的方法有两种,一是提高液晶板的光通过率,但是这个是有极限的,提高的空间已不大。新型的液晶板已经普遍采用了多支灯管的技术,亮度有很大提高,在相同的参数下,液晶的明亮度效果要稍好一些。
由于液晶是背后透光,所以个别液晶电视存在亮度不均匀的问题,这个在购买的时候应注意,特别是在画面全黑或较暗的情况下要注意仔细观察是不是匀称。而等离子则没有这个问题。对比度PK:等离子胜出电视图像清不清晰,还同对比度关系密切,目前等离子电视的对比度已经可以达到10000∶1,而液晶彩电也只能达到800∶1。
衡量电视机效果的一个重要指标是对黑色的表现,越的电视机,所表现的黑色越黑越纯。在对黑色的表现上,等离子要超过液晶,而黑色好正是对比度高的体现。对此,也有不同的声音,例如夏普就认为等离子和液晶的对比度测试标准是不同的,等离子测试的是单个像素点灯泡的亮度,而液晶彩电由于像素点很小,测试的是整个屏幕的亮度。这样的数据是不能作为横向比较的。
虽然夏普的说法有一定道理,但是实际观察会发现,等离子确实比液晶彩电更亮一些,对比度确实更高一些。色彩数PK:等离子色彩数更高由于等离子是自发,而液晶是透光式,像素自发光的色彩饱和度当然更好,所表现的色彩种类也要更丰富。液晶电视大多数都是1667万种颜色,少数可以达到10.7亿色,但是等离子1667万色和10.7亿色已经比较少见,86亿色也不出奇,的已经达到5490亿色。虽然过多的颜色已经超出人眼所能分辨的颜色数量,但是等离子颜色比液晶丰富则是毫无疑问的。可视角度PK:势均力敌,都超过了170度由于液晶是背发光,光线需要从每个像素的缝隙中透出来,缝隙限制了光线辐射的方向,我们在观看的时候会有角度的限制,就是我们平时所说的可视角。而等离子是每个像素直接发光,不存在这个问题。但是随着液晶技术的发展,现在可视角普遍超过170度了,达到176度,基本可以全方位观看了,可以说两者打了个平手。
响应速度PK:液晶响应时间还要提高由于液晶电视靠液晶板里的液晶的转动控制光线的通过,而液晶的转动需要一个反应时间,所以画面在表现运动状态的时候有滞后的现象,就是我们说的拖尾。液晶转动的滞后时间就是响应速度,以目前的技术,一般液晶电视都在16~25毫秒之间,最快的可以做到8毫秒。但是8毫秒仍不能完全克服拖尾现象,特别是大动作画面时,液晶还是能看出来的。而等离子是直接发光的,不存在这个问题。
耗电量PK:液晶功耗更小耗电大小是大家非常关心的问题,等离子耗电量大,夏天甚至像烤炉的说法一直很盛行。但是新的技术应用,比如日立的1024×1024的屏幕,由于采用隔行发光显示的方法工作,不但降低了耗电量、发热量,还可延长使用寿命。最有趣的是松下和夏普在这个问题上的一场交锋,夏普曾将37英寸液晶电视与37英寸等离子电视进行比较,结果液晶电视的耗电量不到200W,而等离子电视则为300W左右。不过松下马上反驳道自己的新技术可以将能耗降低到液晶彩电的水平上。但是有一点不可否认的是,液晶在工作的时候屏幕的温度要比等离子的低。
残影PK:液晶完胜等离子等离子是每个像素直接发光,等离子的每个像素相当于一个小灯管,我们知道灯管亮时间长了,会发黑的,等离子如果长期播放一个固定的图像,会在屏幕上留下一个浅浅的痕迹,就是残影。例如,如果观看一频道太久,屏幕一角的台标就可能烙印在屏幕上,在观赏其它频道时仍看得到其残影。通常情况下,连续观看10~20小时就能造成看得见的残影,遗憾的是,截至目前这个问题还没有完美的解决方法。而液晶则无此担忧。特别是现在的等离子都是16:9的屏幕,如果看普通有线节目时用4:3模式看,时间长了,就会在屏幕两侧留下两道痕迹。液晶由于工作原理不同,液晶电视一般不存在残影问题,所以在这一轮的比拼中,可以说液晶完全胜出。
使用寿命PK:液晶让人更加放心平板电视动辄一万两万的,因此很多人最关心使用寿命。按目前最保守的说法,等离子的寿命也不低于4.5万小时,乐观的说法是6万小时,而液晶基本可以达到6万小时,这么看,即使每天看10个小时,看10多年也没问题,没有必要担心的。而且10多年后又出什么新型电视,谁也预测不到,说不定液晶等离子像今天的显像管电视一样,又被淘汰了。
同时,应该注意到的是,等离子的每一个像素就是一个小灯管,如果一个像素坏掉的话,将无法维修。液晶的损坏有两种情况,一种是坏点,液晶的每一个像素是一个液晶体的小开关,如果坏掉的话,将形成一个坏点,也是无法维修的。另一种是,背面的灯管亮度降低或坏掉,这样的话,换个灯管就可以。
Copyright © mingxiaow.com All Rights Reserved. 杭州优配网络科技有限公司 版权所有 未经书面允许不得转载、复制信息内容、建立镜像
本网站内容仅供参考,请以各学校实际情况为主!内容侵权或错误投诉:841539661@qq.com 工信部备案号:浙ICP备20019715号