Applying the program based on layer-elastic theory,changing the value of structure-layer parameter and wheelbase,the axle-number coefficient in the axle-load conversion formula for combined base asphalt pavement is calculated in this text under the two different conversion guidelines of pavement deflection and stress under semi-rigid base.
以弹性层状体系理论为基础,采用轴载换算方法,以设计弯沉值、半刚性基层层底拉应力为换算指标,通过变换不同的结构层参数及轴距计算了组合结构层沥青路面轴载换算公式中的轴数系数,并通过程序计算得出了建议轴载换算公式。
By use of program based on layer-elastic theory,with surface design deflection value and stress under semi-rigid base as conversion indexes under the conditions of different structure-layer and wheelbase parameters,the axle-number coefficient in the axle-load conversion formula for semi-rigid asphalt pavement is calculated.
应用弹性层状体系理论计算程序,分别以路表设计弯沉值,半刚性基层层底拉应力为换算指标,变换面层、半刚性基层、土基等不同结构层的参数,同时考虑轴距变化的影响,计算半刚性基层沥青路面轴载换算公式中的轴数系数。
Applying the program based on layer-elastic theory,changing the value of structure-layer parameter and wheelbase,the axle-number coefficient in the axle-load conversion formula for flexible-base asphalt pavement is calculated under the two different conversion guidelines of pavement deflection and stress under base.
应用基于弹性层状体系理论的路面结构计算程序,分别以路表设计弯沉值、沥青面层层底拉应力为换算指标,变换沥青面层、级配碎石基层、土基结构层的厚度、模量等结构层参数,同时考虑不同轴距变化的影响,计算柔性基层沥青路面轴载换算公式中的轴数系数。
The fundamental optimal relation between the thermo-economic objective function with the coefficient of performance,and the maximum thermoeconomic objective function with the corresponding coefficient of performance were derived using the linear heat transfer law.
在牛顿传热定律下,导出了热变换器的热经济学目标函数和泵热系数间的基本优化关系,由此可计算出最大热经济目标和对应的热变换器的性能参数。
The optimal relation between the ecological criterion and the coefficient of performance, the maximum ecological criterion and the corresponding coeffici.
基于能量分析的观点 ,建立了反映四热源吸收式热变换器泵热率与熵产率之间最佳折衷的生态学准则 ,导出了线性 (牛顿 )传热定律下生态学目标与泵热系数的优化关系、最大生态学目标值及其相对应的泵热系数、泵热率和熵产率以及最大泵热率时的生态学目标和熵产率。
This article introduces the comparison and determination of the arch axis coefficient in the process of design.
文章就设计过程中拱轴系数的比选情况进行了说明。
On this model basis the first step method is used for optimization of the arch axis coefficient of the arch bridge.
在此模型基础上,使用一阶方法对拱桥的拱轴系数进行优化。
The results is obtained and compared;it is shown that the different design parameters such as rise-span ratio,arch axis coefficient and steel ratio of the arc ribs have different influence on internal force,stress and displacement of any control cross-sections of CFST tied riged arch bridges.
以中承式钢管混凝土系杆拱桥为计算实例,采用通用软件ANSYS建立了拱桥的有限元计算模型,通过改变其主要设计参数,对该类桥梁在恒载作用下的受力情况进行了对比分析,得出了不同矢跨比、拱轴系数、主拱拱肋含钢率等设计参数对拱桥各控制截面内力、应力、位移变化的影响规律。
Sequenced realization of arch-axis coefficient;
求解拱轴系数程序化的实现
The confirm of arch-axis coefficient m s value of catenary reamless arch;
悬链线无铰拱拱轴系数m值的确定
Optimization design of arch-axis coefficient based on the APDL parametric language;
基于APDL参数化语言实现拱轴系数m的优化设计