Automatic Face Recognition ( AFR ) is challenging in image processing and analyzing.
自动人脸识别技术 ( AFR ) 是一项极具挑战性的前沿研究课题.
互联网
In addition, elaborate system design is also as important for developing robust and practical AFR systems.
另外,对开发鲁棒实用的AFR系统 而言, 研究应用系统设计层面的诸多工程技术问题同样至关重要.
互联网
In this thesis, the above - mentioned key issues are studied , aiming at robust and practical AFR systems.
以设计开发鲁棒、实用的AFR系统为目标,本文重点探讨了人脸识别中的上述关键问题.
互联网
Model based AFR control strategy requires accurate engine model first.
基于模型的空燃比控制策略首先要求有精确的模型,均值模型是非线性模型,其精度高、表达形式简单,能够满足控制过程实时性的要求,是比较理想的模型.
互联网
Based on the traditional eigenfaces method, this paper presents an improving approach to AFR.
在传统的“特征脸”方法基础上, 提出了一种改进的人脸自动识别方法.
互联网
However, evaluation results and practical experience have shown that AFR technologies are currently far from mature.
但测试和实践经验表明:非理想条件下的人脸识别技术还远未成熟!
互联网