left quasigroup

基本解释左拟群

网络释义

1)left quasigroup,左拟群2)left regular quasi-semigroups,左正则拟半群3)left group,左群4)left C-semigroup,左C-半群5)Left C-semigroups,左C-半群6)left inverse semigroup,左逆半群

用法和例句

The necessary and sufficient conditions for the semidirect product and wreath product of two left regular quasi-semigroups to be left regular quasi-semigroups are given.

给出了两个左正则拟半群S和T的半直积S×αT和圈积SωXT是左正则拟半群的充分必要条件。

The equivalent character that a semigroup is a quasi-inflation of a left group;

半群是左群的拟膨胀的等价刻画

The necessary and sufficient conditions for the semidirect products and the wreath products of two semigroups to be a left group are given.

给出了两个一般的即未必含有单位元的半群的半直积和圈积是左群的充分必要条件,并讨论了左群的最小群同余与半直积的最小群同余之间的关系。

In this paper,we chiefly study Cayley graphs of strong semilattices of left groups and obtain some results for structures and properties of this graphs.

研究了左群的强半格的Cayley图的结构和性质,给出了一个有向图是左群强半格的Cayley图的充分条件。

In this paper,we investigate another structure of left C-semigroups by means of the wreath product,and the wreath product structure of left C-semigroups is obtained.

利用半群圈积的概念得到了左C-半群的又一种结构——圈积结构。

Shum extended Clifford semigroups in the class of regular semigroups and gave the definition of left C-semigroups in 1991.

1991年,朱聘瑜,郭聿琦和岑嘉评在正则半群范围内,对Clifford半群进行了推广,定义了所谓左C-半群,不仅对左C-半群的特征进行了刻画,而且给出了左C-半群的ξ-积结构。

A construction of left inverse semigroups;

左逆半群的构造(英文)

最新行业英语

行业英语