The set-valued optimization problem with constraints is considered in the sense of super efficiency in real normed linear space.
在实赋范线性空间中考虑约束集值优化问题的超有效性。
The set-valued optimization problem with constraints(VP)is considered in the sense of super efficiency in Hausdorff locally convex linear topological spaces.
在Hausdorff局部凸拓扑线性空间中考虑约束向量集值优化问题(VP)的超有效性。
Therefore the issues charactering super efficiency by super saddle points are solved.
利用凸集分离定理证明了两个标量化引理,并得到了超鞍点定理和超鞍点的等价刻画定理,从而解决了用超鞍点刻画超有效性的问题。
Meanwhile,the super efficient DMU and the strongly super efficient DMU are defined.
论文讨论了基于VRS的SE DEA模型不可行的充分必要条件,分析了有效决策单元的超有效和强超有效特性,实现对有效决策单元的进一步分类。
Super efficient DMU and strongly super efficient DMU are firstly defined.
定义了超有效和强超有效决策单元。
Meanwhile,the super efficient DMU and the strongly super efficient DMU are defined.
论文讨论了基于VRS的SE DEA模型不可行的充分必要条件,分析了有效决策单元的超有效和强超有效特性,实现对有效决策单元的进一步分类。
Super efficient DMU and strongly super efficient DMU are firstly defined.
定义了超有效和强超有效决策单元。
The stability of super efficient points in the sense of demicontinuity is discussed.
讨论了次连续意义下超有效点的稳定性 ,运用扰动的知识 ,得到了局部凸空间中双重扰动的超有效点的稳定
In this paper, we discuss the stability of super efficient points.
在Banach空间中讨论了超有效点的稳定性。
Under the condition that the objective mapping is cone upper semicontinuous and cone quasiconvex, we prove the connectedness results of the set of super efficient solutions to multiobjective optimization with set-valued mapping.
本文研究集值映射多目标优化超有效解集的连通性,在目标映射为锥上半连续和 锥拟凸的条件下,证明了其超有效解集是连通的。
In this paper, we study the connectedness of super efficient solution sets for set-valued mapping vector optimization in normed linear space.
本文研究赋范线性空间中集值映射向量优化问题超有效解集的连通性问题。
In this paper, we introduce a concept of super efficient solution of the opti-mization problem for a set-valued mapping.
本文在局部凸空间中对集值映射最优化问题引入超有效解的概念。