Each nonprincipal arithmetical ultrafilter p∈βω-ω is associated with a simple arithmetical model Np = {f(p) : f∈ω) N, and a positive real number is just an equivalence class of finite fractions made by arithmetical ultrafilters (instead of natural numbers), just like the ancient Greek s idea.
每个非主算术超滤p∈βω-ω都可用来形成一个简单的不可数算术模型Np= {f(p):f∈ωω}N。
Taylor in their paper “Partition theorem and ultrafilters”(Transactions of the American Mathematical Society, 1978, 241:290), it is shown that the product of two incompatible arrow P points is an arithmetical ultrafilter.
Taylor在“剖分定理与超滤”一文 (该文发表在杂志TransactionsoftheAmericanMathematicalSociety ,1 978,2 41 :2 90 )中提出的一个问题的肯定结果 ,即两个不相容矢性P 点之积一定是算术超滤积 。