Plaintext imbedded into the divisors of a hyperelliptic curve is a key work in HECC.
明文信息嵌入到超椭圆曲线HEC的除子,是该密码体制的一个重要的工作。
Divisor scalar multiplication is the key operation in hyperelliptic curve cryptosystem.
除子标量乘是超椭圆曲线密码体制中的关键运算。
The hyperelliptic curve cryptosystem is based on the hyperelliptic curve discrete logarithm problem, and has the higher safety and the shorter operands compared to other cryptosystems.
超椭圆曲线密码体制是以超椭圆曲线离散对数问题的难解性为基础的,具有安全性高、操作数短等优点,相对于其他密码体制有明显的优势。
An undeniable signature scheme based on Jacobian groups of hyperelliptic curves;
基于超椭圆曲线Jacobian群的不可否认数字签名
Scalar multiplication of hyperelliptic curves with the efficient algorithm for inversion;
利用有效的求逆算法快速计算超椭圆曲线标量乘
The explicit formula is presented for computing the reduced sum of two divisors of genus 3 hyperelliptic curves in term of Cantor\' algorithm.
根据传统的Cantor算法,结合亏格为3的超椭圆曲线除子的特点,给出了其约化除子加法和翻倍运算的计算公式。
Improved key management scheme based on hyper-elliptic curves cryptosystem;
一类基于超椭圆曲线密码的密钥管理方案
Analysis are made on the proxy authorization schemes and proxy signature schemes in electronic business,as to the security threats of present proxy signature schemes,this paper presents a hybrid proxy signature scheme based on hyper-elliptic curves cryptosystem that can gain a wide application in computer and wireless communication network.
分析了电子商务、电子政务代理授权方案及网络通信中的代理签名协议,针对现有代理签名方案存在秘密信息泄漏、签名伪造等安全漏洞及协议过程复杂、签名认证运算开销大等不足之处,并基于超椭圆曲线密码提出一类混合代理签名方案,对方案的安全性与执行效率进行了分析。
Based on hyper-elliptic curves cryptosystem,it presents a hybrid multi-signature scheme that can gain a wide application in computer and wireless communication network.
分析了现有电子商务、电子政务多方授权方案及网络通信中的多重数字签名协议,基于超椭圆曲线密码,针对现有多重签名方案存在秘密信息泄漏、签名伪造等安全漏洞及协议过程复杂、签名认证运算开销大等不足之处,该文提出了一类混合多重签名方案,分析了方案的安全性与执行效率。
Research on Hyperelliptic Curve Cryptosystem Based on FPI;
基于FPI的超椭圆曲线密码体制的研究
A Proxy Signature Scheme Based on Hyperelliptic Curve
一种基于超椭圆曲线的代理签名方案
The Digital Signatures Based on Hyperelliptic Curve Cryptogrophy;
基于超椭圆曲线密码体系的数字签名技术
Research and Implement of FPGA-based Hyperelliptic Curve Cryptosystems;
基于FPGA的超椭圆曲线码系统的研究与实现
A Threshold Signature Scheme Based on Hyperelliptic Curve Cryptosystem
基于超椭圆曲线密码体制的门限签名方案
Formulae for Arithmetic on Genus 3 Hyperelliptic Curves
亏格为3的超椭圆曲线除子类群的计算公式
Research on Fast Scalar Multiplication Algorithms in Hyperelliptic Curve Cryptosystem;
超椭圆曲线密码体制中标量乘法的快速算法研究
Free Linear Vibration and Buckling of Super-Elliptical Plates Resting on Symmetrically Distributed Point-Supports on the Diagonals
沿对角线对称分布的点支撑超椭圆板的线性自由振动和屈曲分析
Several Attacks on RSA-Type Cryptosystems over Elliptic Curves and Conic Curves;
椭圆曲线和圆椎曲线的RSA密码体制的攻击
The security of Elliptic Curve Cryptogrphy(ECC) is based on the difficulty of elliptic curve discrete logarithm.
椭圆曲线密码体制的安全性基于椭圆曲线离散对数问题的难解性。
Two Bilinear Pairing Algorithms Based on Elliptic Curves
基于椭圆曲线的两种双线性配对算法
Study of ECC Digital Signature Scheme
基于椭圆曲线的数字签名方案的研究
Research on Finite Field Arithmetic and Scalar Multiplication of Elliptic Curve Cryptographys;
有限域运算和椭圆曲线数乘运算研究
The Equivalence of Discrete Logarithms between Elliptic Curve and Real Quadratic Function Field;
椭圆曲线与实二次函数域的DLP等价
The Parallelization Algorithm Research of Elliptic Curve Scalar Multiplication on DSP;
椭圆曲线标量乘DSP并行算法的研究
The Research of Elliptic Curve Cryptosystem over Optimal Extension Fields;
最优扩域上的椭圆曲线加密系统研究
The Study of Digital Signature Based on Elliptic Curve Cryptography;
基于椭圆曲线密码的数字签名的研究
The Research and DSP Implementation of Elliptic Curve Cryptography;
椭圆曲线密码体制的研究及DSP实现