In this paper, the integer solutions and rational solutions of the right triangular diophantine equation aregiven and generalized to the solutions of diophantine equation x_1~2+x_2~2+…x_n~2=y~2.
给出了勾股丢番图方程的整数解和有理数解,并推广至二次齐次丢番图方程的求解。
In this paper, the general rational solutions and the general integer solutions of are given.
应用复变函数论的方法,简洁地给出了的一切有理数解和一切整数解公式。
In this paper,the all rational solutions of the general Pell s equation is given and applications are given.
本文给出了广义Pell方程的一切有理数解公式,应用它得到了一类Legendre方程的一切整数解公式。
Discussing the two kinds of research pattern of mathematical understanding;
对数学理解两种研究模式的探讨
This paper overviewed some researches of mathematical problem posing from its relations with mathematical understanding, problem posing, cognitive strategy, teaching experiment.
国内外众多学者对数学问题提出进行了大量的实证研究,主要集中在以下几个方面:问题提出与数学理解、问题提出与问题解决、问题提出的认知策略、问题提出的教学实验。
Mathematical study thinks much of the mathematical understanding which is a constinuous progress of construction.
数学记忆与数学理解在数学学习中的重要性随着新课程改革悄然发生着变化。
The new course reformed concern about the development student’s number sense,which had been seen as important way to promote student s mathematics comprehension and mathematics consideration.
新课程改革高度关注发展学生的数感,将其作为促进学生数学理解和数学思考的重要方式。
Traditional teaching ideas and methods made students havent a good mathematics understanding.
教师忽视数学理解是问题的主要原因,其中教师在教学观念和教学方法上的落后是导致其对数学知识的理解和把握不够深入的主要因素。
Mathematics understanding modes and levels were the basis to mathematics understanding demonstration research.
数学理解是有层次的,数学理解的模式与层次是进行数学理解实证研究的依据和基础。
The level of mathematics understanding had some characters: unconscious, whole function, two type circles, and so on.
数学理解有不同的程度、层次,这些层次包括:零层次、常识性层次、逻辑性层次、观念性层次和无尽的层次。
The Rational Number Solutions of the Equation sinπx+cosπx=(-1)~[x];
方程sinπx+cosπx=(-1)~[x]的有理数解
The Rational Solution of One and Two Dimensions KP Equation;
Kadomtsev-Petviashvili方程的有理函数解
On Using the Theorem of Scrap Number Operation to Confirm the Resolution of Rational Proper Formula;
用残数运算定理确定有理真分式分解
Briefly introduce the method of rational function to resolve portion fraction;
有理函数分解成部分分式的方法简介
every number has a unique position in the sequence.
数有整数有理数实数等。
A Study on Understanding Levels and Teaching and Learning Strategies of Operation of Rational Numbers;
有理数运算的理解水平及其教与学的策略研究
Decomposition Theorem and Application of Partial Fraction of Rational Function
有理函数部分分式的分解定理及其应用
Good understanding of the business and a flair with sales data/ information.
对业务及销售数据/息有良好的理解能力。
His ideas are advanced, and only a few people could understand him.
他的思想是先进的, 只有少数人能理解他。
Some solutions to the indefinite integral of a rational function and their generalization;
一个有理函数的不定积分的多解和推广
The formulism of rational function that resolves into factors and its application;
有理函数分解为部分分式的公式法及其应用
Theory of Truth Degree Based on the Finite Interpretation and Enumerable Interpretation of Fuzzy Predicate Logic Formulas;
模糊谓词逻辑公式的有限和可数解释真度理论
Understanding Regional National Autonomy from the Point of View of Human Rights and Effective Participation;
从人权和有效参与视角来理解少数民族自治
Finite precision function theory and photon solution of Einstein-Maxwell equations
有限精度函数理论与Einstein-Maxwell方程的光子解
It has a very narrow understanding of the scope of most problems.
现有的多数软件都没什么知觉,它对多数问题的理解是狭隘的。
Don’t ask me to solve mathematical problems; they are out of my grasp.
别叫我解数学题,数学题我理解不了。
To have knowledge or an understanding of.
具有…知识,理解…
any rational or irrational number.
有理数和无理数的总称。