p-HPF is a HPF parallel compiling system designed by us for parallel programming on cluster workstations.
p-HPF是一个基于cluster体系结构的HPF并行编译系统 ,它不仅支持数据并行计算范例 ,而且也支持任务并行范例。
Then a certain DAD structure used by p-HPF parallel compiling system is introduced in detail.
从网络并行计算的一般需求出发,讨论了分布数组描述DAD(distributed array descriptor)的内容和结构,具体给出了p-HPF并行编译系统的DAD结构定义。
Architecture of teaching experiment environment system with MPI parallel programming;
一种MPI并行编程教学实验环境系统的架构
The Parallel Programming Technology of PVM on Cluster;
基于机群系统的PVM并行编程技术研究
Design and Implementation of a Lightweight Grid-Enabled MPI-Like Parallel Programming Framework;
适用于网格环境的类MPI轻量级并行编程框架的设计与实现
Tests showed that this parallel compilation strategy more effectively supports implicitly data parallelism than the Intel compiles EFC and that the optimization techniques speed up parallel program execution.
结果表明,该并行编译策略有效地实现了对隐式数据并行的支持。
Computation partition is one of the most important problems in parallel compilation and optimization.
计算划分问题是并行编译中最为重要的问题之一。
This paper will discuss the key tech-niques of parallel compilation based on distributed memory systems from four aspects including parallel programming model,code and data distribution,communication optimization and code generation issues.
分布存储系统的并行编译器需要解决各局部存储器之间数据分布问题和各处理机之间通信优化问题。
Computation and data decompositions are key factors of parallel compiler on distributed memory parallel computers.
计算和数据分解是分布主存系统中并行编译的关键,在并行优化编译器的并行识别过程中,许多串行代码无法找到全局一致的分解结果。
This paper comes out the features of non- perfect nested loop and its useful transformation in parallel compiler on the basis of the experience of implement of AFT which is a automatic parallelize system and analysis of some benchmark.
在并行编译中,循环变换是开发程序并行度的主要方法,但存在复杂控制流的非紧密嵌套循环往往无法得到有效的并行化。
Data partition is the key technique of parallel compiler on Distributed Memory Parallel Computers(DMPCs).
数据划分是分布主存系统中并行编译的关键技术,它以数组和包含这些数组的嵌套循环为研究对象,以提高数据局部性和挖掘计算并行性为根本目的。